SOME FINITELY PRESENTED GROUPS OF COHOMOLOGICAL DIMENSION TWO WITH PROPERTY (FA)

Stephen J. PRIDE
Department of Mathematics, University Gardens, Glasgow G12 8QW, Scotland

Communicated by K.W. Gruenberg
Received 21 October 1982

In Problem C3 of [6], it is asked whether every finitely generated group of cohomological dimension two splits over a free group. In [1] it is remarked that the answer to this problem is 'no' in general: a group S constructed by Ol'sanskii in [4] provides an example showing this. $\mathrm{A}_{\hat{i}}$ the Geometric Topology Conference, University of Sussex, 1982, M.J. Dunwoody asked about the status of the above problem for finitely presented groups (S is not finitely presented). It is shown here that the answer is 'no' in this case also.

In fact, a stronger result is obtained. Recall [5] that a group G is said to have property (FA) if, whenever G acts (without inversions) on a tree there is at least one fixed point. For finitely generated groups this is equivalent [5, Chapter I, Theorem 15] to the following two conditions: G has no infinite cyclic quotient; G is not an amalgam. I give here examples of finitely presented groups of cohomological dimension two which have property (FA). It should be remarked that the group S above has property (FA).

Let G be generated by two elements x, y subjeci to six defining relators of the following form:

$$
\begin{aligned}
& R_{1}(x, y)=x y^{\alpha_{1}} x y^{\alpha_{2}} \cdots x y^{\alpha_{k}}, \\
& R_{2}(x, y)=y x^{\beta_{1}} y x^{\beta_{2}} \cdots y x^{\beta_{k}}, \\
& R_{3}(x, y)=x^{\gamma_{1}} y^{-\delta_{1}} x^{\gamma_{2}} y^{-\delta_{2}} \cdots x^{\gamma_{k}} y^{-\delta_{k}}, \\
& R_{4}(x, y)=x y^{-p_{1}} x y^{p_{1}} x y^{-p_{2}} x y^{p_{2}} \cdots x y^{-p_{k}} x y^{p_{k}}, \\
& R_{5}(x, y)=y x^{-q_{1}} y x^{q_{1}} y x^{-q_{2}} y x^{q_{2}} \cdots y x^{-q_{k}} y x^{q_{k}}, \\
& R_{6}(x, y)=(x y)^{m_{1}}\left(x^{-1} y^{-1}\right)^{n_{1}}\left(x^{\prime}\right)^{m_{2}}\left(x^{-1} y^{-1}\right)^{n_{2}} \cdots(x y)^{m_{k}}\left(x^{-1} y^{-1}\right)^{n_{k}} .
\end{aligned}
$$

Here all the integers $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}, p_{i}, q_{i}, m_{i}, n_{i}$ are positive. It will be shown shortly that G has property (FA).

Now if p is a positive integer, then for a suitable choice of k and the α_{i}, β_{i} etc., the symmetrized closure of $\left\{R_{1}, R_{2}, \ldots, R_{6}\right\}$ can be made to satisfy the small
cancellation condition $C(p)$. Moreover, one can arrange that no R_{j} is a proper power. Then if $p \geq 6$, it follows from [1-3] (and the fact that G is not free) that the cohomological dimension of G is two.

To see that G has property (FA), first note that G has no infinite cyclic quotient, for in the abelianization of G, x and y have finite order (by R_{4} and R_{5}).

Secondly, G is not an amalgam. For suppose $G=A_{-1}{ }^{*} C A_{1}$ with $C \neq A_{ \pm 1}$. Each element $g \in G$ can be writen in normal form $t_{1} t_{2} \cdots t_{r}$ where the t_{i} come alternately from the factors $A_{ \pm 1}$, and no t_{i} belongs to C unless $r=1$. We write $|g|=r$.

Now we may assume without loss of generality that no pair (u, v) conjugate to (x, y) has $|u|+|v|<|x|+|y|$. Then taking a suitable conjugate of (x, y) and interchanging x and y, if necessary, we may write

$$
x=x_{1} x_{2} \cdots x_{m}, \quad y=z_{l}^{-1} \cdots z_{1}^{-1} y_{1} \cdots y_{n} z_{1} \cdots z_{l} \quad(l \geq 0, n>0)
$$

in normal form. Here: $m \leq n$; if $m>1$, then $x_{m} x_{1} \notin C$ (that is, x is cyclically reduced); if $n>^{\prime}$, then $y_{n} y_{1} \notin C$; if $l \neq 0$, then x_{1}, x_{m} belong to the same factor and z_{l} does not belong to this factor.

By considering the normal form of $R_{6}(x, y)$ one easily deduces that $l=0$. Moreover, $n>1$, for if $m=n=1$, then x_{1}, y_{1} could not belong to the same factor (since $\operatorname{sgp}\{x, y\}=G$), and so $R_{6}(x, y) \neq 1$.

If $m>1$, then by considering $R_{1}(x, y)$ it is easily deduced that one of $x_{m} y_{1}, y_{n} x_{1}$ belongs to C. Thus $x_{m} y_{n}^{-1}, y_{1}^{-1} x_{1} \notin C$, so $R_{3}(x, y) \neq 1$, a contradiction. Hence $m=1$.

Now by minimality, not all of x, y_{1}, y_{n} can belong to the same factor. By considering the normal form of $R_{1}(x, y)$ one deduces that y_{1}, y_{n} must belong to different factors, and one of $y_{n} x, x y_{1}$ - say the formei - belongs to C. But then $y_{n} x y_{n}^{-1} \notin C$, so $R_{4}(x, y) \neq 1$.

Acknowledgements

In conclusion, I thank Martin Dunwoody and Jim Howie for commenting on an initial draft of this note. I also thank the referee and Jean-Pierre Serre for their comments. Serre informs me that he has an alternative construction of finitely presented groups of cohomological dimension two with property (FA).

References

[1] D.J. Collins and J. Huebschmann, Spherical diagrams and identities among relations, Math. Ann. 261 (1982) 155-183.
[2] J. Huebschmann, Cohomology theory of aspherical groups and of small cancellation groups, J. Pure Appl. Algebra 14 (1979) 137-143.
[3] R.C. Lyndon, On Dehn's algorithm, Math. An 2. 166 (1966) 208-228.
[4] A. Ju. Ol'sanskii, An infinite simple Noetherian group without torsion, Math. USSR Izvestija 15 (1980) 531-588
$15 \mid$ J.-P. Serre, Trees (Springer-Verlag, Berlin, Heidelberg, New York, 1980).
[6] C.I.C. Wall (ed), Homological Group Theorv, LMS Lecture Note Series, Vol. 36 (Cambridge Univ. Press, Cambridge, 1977).

